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Abstract

This vignette illustrates the use of the HTSCluster package through a toy example of a co-expression analysis
using the human RNA-seq data from Sultan et al. (2008) [1]. For a full presentation of the statistical method,
please see our paper [2]. Note that starting in version 2.0.8 of the package, the lib.size and lib.type parameters
in the PoisMixClus and PoisMixClusWrapper functions have been replaced by the single norm parameter (which
can, if desired, contain a vector of pre-calculated normalization factors).
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1 Input data

In this vignette, we will work with the gene-level read counts from the Sultan et al. (2008) data [1], which may be found
in the HTSFilter Bioconductor package [3]. These data were obtained from a human embryonic kidney (HEK293T)
and a Ramos B cell line, with two biological replicates in each experimental condition. The raw read counts for 9010
genes and phenotype tables were originally obtained from the ReCount online resource [4].

We begin by loading the necessary packages, data, and phenotypic information for the analysis.

> library(HTSCluster)

> library(HTSFilter)

> library(Biobase)

> data(sultan)

> conds <- as.vector(phenoData(sultan)$cell.line)

> y <- exprs(sultan)

As an additional pre-processing step, we apply the data-based filter proposed in the HTSFilter package [3] to
remove weakly expressed genes across the two conditions. This approach identifies a filtering threshold by maximizing
a global Jaccard similarity index calculated between replicates within each condition. After applying this threshold (see
Figure 1), 4956 genes were retained for the subsequent co-expression analysis.
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Figure 1: Global Jaccard similarity index calculated over various filtering thresholds for normalized counts for the [1]
data via the HTSFilter package [3]. The data-driven filtering threshold in this case is equal to s? = 12.02.

> y.filter <- HTSFilter(y, conds, norm="TMM")

> table(y.filter$on) ## 4054 off, 4956 on

0 1

4054 4956

> dat.select <- y.filter$filteredData

2 Identifying co-expressed genes

2.1 Model description

The following description closely follows that provided in our main paper [2].
Let Yijl be the random variable corresponding to the digital gene expression measure (DGE) for biological entity i

(i = 1, . . . , n) of condition j (j = 1, . . . , d) in biological replicate l (l = 1, . . . , rj), with yijl being the corresponding

observed value of Yijl. Let q =
∑d

j=1 rj be the total number of variables (all replicates in all conditions) in the data,
such that y = (yijl) is the n × q matrix of the DGE for all observations and variables, and yi is the q-dimensional
vector of DGE for all variables of observation i. We use dot notation to indicate summations in various directions,
e.g., y·jl =

∑
i yijl, yi·· =

∑
j

∑
l yijl, and so on.

2.1.1 Poisson mixture model

To cluster RNA-seq data, we consider a model-based clustering procedure based on mixture of Poisson distributions.
The data y are assumed to come from K distinct subpopulations (clusters), each of which is modeled separately:

f(y;K,ΨK) =

n∏
i=1

K∑
k=1

πkfk(yi;θik)

where ΨK = (π1, . . . , πK−1,θ
′)′, θ′ contains all of the parameters in {θik}i,k and π = (π1, . . . , πK)′ are the mixing

proportions, with πk ∈ (0, 1) for all k and
∑K

k=1 πk = 1. Samples are assumed to be independent conditionally on the
components:

fk(yi;θik) =

d∏
j=1

rj∏
l=1

P(yijl;µijlk),
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where P(·;µijlk) denotes the standard Poisson probability mass function with mean µijlk.
Each mean µijlk is parameterized by

µijlk = wisjlλjk

where wi = yi.. corresponds to the overall expression level of observation i (e.g., weakly to strongly expressed) and
sjl represents the normalized library size for replicate l of condition j, such that

∑
j,l sjl = 1. These normalization

factors take into account the fact that the number of reads expected to map to a particular gene depends not only on
its expression level, but also on the library size (overall number of mapped reads) and the overall composition of the
RNA population being sampled. We note that {sjl}j,l are estimated from the data prior to fitting the model, and like
the overall expression levels wi, they are subsequently considered to be fixed in the Poisson mixture model. Finally,
the unknown parameter vector λk = (λ1k, . . . , λdk) corresponds to the clustering parameters that define the profiles
of the genes in cluster k across all biological conditions.

2.1.2 Inference

To estimate mixture parameters ΨK = (π,λ1, . . . ,λK) by computing the maximum likelihood estimate (MLE), an

Expectation-Maximization (EM) algorithm is considered. After initializing the parameters Ψ
(0)
K and z(0) by a so-called

Small-EM strategy, the E-step at iteration b corresponds to computing the conditional probability that an observation
i arises from the kth component for the current value of the mixture parameters:

t
(b)
ik =

π
(b)
k fk(yi;θ

(b)
ik )∑K

m=1 π
(b)
m fm(yi;θ

(b)
im)

where θ
(b)
ik = {wisjlλ

(b)
jk }jl. Then, in the M-step the mixture parameter estimates are updated to maximize the

expected value of the completed likelihood, which leads to weighting the observation i for group k with the conditional

probability t
(b)
ik . Thus,

π
(b+1)
k =

1

n

n∑
i=1

t
(b)
ik and λ

(b+1)
jk =

n∑
i=1

t
(b)
ik yij·

sj·
n∑

i=1

t
(b)
ik yi··

,

since wi = yi··. Note that at each iteration of the EM algorithm, we obtain that
d∑

j=1

λ
(b)
jk sj. = 1. Thus λ

(b)
jk sj· can be

interpreted as the proportion of reads that are attributed to condition j in cluster k, after accounting for differences
due to library size; this proportion is shared among the replicates of condition j according to their respective library
sizes sjl.

2.1.3 Model selection

For model selection (i.e., the choice of the number of clusters K), we make use of the so-called slope heuristics, which
is a data-driven method to calibrate a penalized criterion that is known up to a multiplicative constant. Briefly, in our
context the penalty is assumed to be proportional to the number of free parameters νK (i.e., the model dimension),
such that pen(K) ∝ κνK ; we note that this assumption may be verified in practice. The penalty is calibrated using
the data-driven slope estimation (DDSE) procedure available in the capushe R package [5]. This procedure directly
estimates the slope of the expected linear relationship of the loglikelihood with respect to the model dimension for the
most complex models (here, models with large K). Denoting the estimated slope κ̂, in our context the slope heuristics
consists of setting the penalty to be 2κ̂νK . The number of selected clusters K̂ then corresponds to the value of K
minimizing the penalized criterion:

crit(K) = − log f(y;K, Ψ̂K) + 2κ̂νK .

Finally, we note that capushe also provides an alternative procedure for calibrating the penalty called the dimension
jump (Djump). For more details about the DDSE and Djump approaches, see [5].

Based on Ψ̂K̂ , each observation i is assigned to the component maximizing the conditional probability t̂ik (i.e.,
using the so-called MAP rule).

2.2 Co-expression analysis of Sultan et al. (2008) data

We perform a single run of HTSCluster for K = 1, . . . , 35 clusters, using the Trimmed Means of M-values (TMM)
normalization [6], and the splitting small-EM strategy described in the main paper. In the interest of reduced com-
putational time, the settings here differ slightly from those used in the full analysis (i.e., smaller set of models and a
single run); as such, the results presented here differ slightly from those presented in the main paper [2].
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Figure 2: Diagnostic plots provided by capushe package for the DDSE approach; see [5] for additional information.

> ## ATTENTION: this code is somewhat long to run

> set.seed(12345)

> PMM <- PoisMixClusWrapper(y=dat.select, gmin=1, gmax=35,

+ conds=conds, split.init=TRUE, norm="TMM")

The above code takes about 20 minutes of computation time on a Dell Latitude E6530 quad-core 2.70 GHz Intel(R)
Core(TM) with 10GB of RAM, running a 64-bit version of Windows 7 Professional.

2.2.1 Model selection

In HTSCluster, model selection may be performed using the DDSE calibration for slope heuristics, Djump calibration
for slope heuristics, Bayesian Information Criterion (BIC), and Integrated Completed Likelihood (ICL) criterion. The
models selected with each of these approaches may be accessed as follows:

> mod.BIC <- PMM$BIC.results

> mod.ICL <- PMM$ICL.results

> mod.Djump <- PMM$Djump.results

> mod.DDSE <- PMM$DDSE.results

The number of clusters selected by each of these model selection approaches may be viewed via a summary function
called on the PoisMixClusWrapper object:

> summary(PMM)

*************************************************

Selected number of clusters via ICL = 10

Selected number of clusters via BIC = 30

Selected number of clusters via Djump = 15

Selected number of clusters via DDSE = 14

*************************************************

Note that the slope heuristics approach may only be applied if more than 10 models are included in the model
collection (i.e., if gmax-gmin + 1 is greater than 10); in the case where this constraint is not met, a warning message
to this effect is produced. In cases where the slope heuristics approach may be applied, it is essential to verify the
diagnostic plots produced by capushe prior to basing inference on the selected models (see below), and a message
reminding the user of this is displayed. The capushe package provides diagnostic plots for the slope heuristics in order
to ensure that sufficiently complex models have been considered.

Results from the capushe package over the set of models fit by HTSCluster may be found in the capushe subset of
objects of class HTSClusterWrapper (i.e., the output of the PoisMixClusWrapper function). To access the results,
diagnostic plots (see Figure 2), and the selected model dimension of the DDSE method, the following code may be
used.
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> DDSE <- PMM$capushe@DDSE ## DDSE results

> plot(DDSE, newwindow=F, ask=F) ## DDSE diagnostic plots

> DDSE@model ## Model selected by DDSE

[1] "14"

Also, note that all capushe diagnostic plots may be obtained directly from the HTSClusterWrapper object using
the following command:

> ## Not run:

> ## plot(PMM, graphs="capushe")

Finally, a warning message is produced by capushe if the models returned by the DDSE and Djump slope heuristics
approaches are not the same.

2.2.2 Visualizing results

For the following summarization and visualization, we will make use of the model selected by the DDSE approach:

> mod <- PMM$DDSE.results

A built-in summary command allows a text-based overview of the selected model, including the number of clusters,
the model selection approach (in this case, DDSE), the number of genes in each cluster, the number of genes with
maximum conditional probabilities greater than 90%, the number of genes in each cluster with maximum conditional
probabilities greater than 90%, and the estimated values of λ̂ and π̂.

> summary(mod)

*************************************************

Number of clusters = 14

Model selection via DDSE

*************************************************

Cluster sizes:

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7

540 192 235 81 458 99 514

Cluster 8 Cluster 9 Cluster 10 Cluster 11 Cluster 12 Cluster 13 Cluster 14

207 492 214 396 442 575 511

Number of observations with MAP > 0.90 (% of total):

1735 (35%)

Number of observations with MAP > 0.90 per cluster (% of total per cluster):

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7

479 145 152 44 110 40 243

(88.7%) (75.52%) (64.68%) (54.32%) (24.02%) (40.4%) (47.28%)

Cluster 8 Cluster 9 Cluster 10 Cluster 11 Cluster 12 Cluster 13 Cluster 14

85 85 68 78 51 69 86

(41.06%) (17.28%) (31.78%) (19.7%) (11.54%) (12%) (16.83%)

Lambda:

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

HEK293T 1.77 0.01 1.64 0.09 1.23 0.24

Ramos B cell 0.01 2.27 0.18 2.16 0.70 1.98

Cluster 7 Cluster 8 Cluster 9 Cluster 10 Cluster 11 Cluster 12

HEK293T 1.39 0.41 1.13 0.59 0.72 1.02

Ramos B cell 0.50 1.76 0.84 1.52 1.36 0.97

Cluster 13 Cluster 14

HEK293T 0.94 0.83

Ramos B cell 1.07 1.21

Pi:

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7
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Figure 3: Visualization of overall cluster behavior for the Sultan et al. data. For each cluster, bar plots of λ̂jksj· are
drawn for each experimental condition, where the width of each bar corresponds to the estimated proportion π̂k

0.11 0.04 0.05 0.02 0.09 0.02 0.10

Cluster 8 Cluster 9 Cluster 10 Cluster 11 Cluster 12 Cluster 13 Cluster 14

0.04 0.10 0.05 0.08 0.10 0.11 0.10

The estimated values for λ̂ and π̂ may also be visualized using barplots, as in Figure 3, where bar widths represent
the values of π̂.

> plot(mod, graphs="lambda")

Finally, we may also examine a histogram of maximum conditional probabilities of cluster membership for all genes
(Figure 4, left), as well as boxplots of maximum conditional probabilities of cluster membership for the genes assigned
to each cluster (Figure 4, right). These plots help to evaluate the degree of certitude accorded by the model in
assigning genes to clusters, as well as whether some clusters are attribued a greater degree of uncertainty than others.

> plot(mod, graphs="map")

> plot(mod, graphs="map.bycluster")

The cluster labels and conditional probabilities of cluster membership assigned to each gene may be accessed using
the following code:

> labels <- mod$labels

> probaPost <- mod$probaPost

3 Further reading

For additional information on the statistical method illustrated in this vignette, see [2].

4 Session Info

> sessionInfo()
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Figure 4: (left) Histogram of maximum conditional probabilities of cluster membership. (right) Boxplots of maximum
conditional probabilities of cluster membership for the genes assigned to each cluster.

R version 3.1.1 (2014-07-10)

Platform: x86_64-w64-mingw32/x64 (64-bit)

locale:

[1] LC_COLLATE=French_France.1252 LC_CTYPE=French_France.1252

[3] LC_MONETARY=French_France.1252 LC_NUMERIC=C

[5] LC_TIME=French_France.1252

attached base packages:

[1] parallel stats graphics grDevices utils datasets methods

[8] base

other attached packages:

[1] HTSFilter_1.6.0 Biobase_2.26.0 BiocGenerics_0.12.1

[4] HTSCluster_2.0.8 capushe_1.0 MASS_7.3-35

loaded via a namespace (and not attached):

[1] acepack_1.3-3.3 annotate_1.44.0

[3] AnnotationDbi_1.28.1 base64enc_0.1-2

[5] BatchJobs_1.5 BBmisc_1.8

[7] BiocParallel_1.0.0 brew_1.0-6

[9] checkmate_1.5.1 cluster_1.15.3

[11] codetools_0.2-9 colorspace_1.2-4

[13] DBI_0.3.1 DESeq_1.18.0

[15] DESeq2_1.6.2 digest_0.6.6

[17] edgeR_3.8.5 fail_1.2

[19] foreach_1.4.2 foreign_0.8-61

[21] Formula_1.1-2 genefilter_1.48.1

[23] geneplotter_1.44.0 GenomeInfoDb_1.2.3

[25] GenomicRanges_1.18.3 ggplot2_1.0.0

[27] grid_3.1.1 gtable_0.1.2

[29] Hmisc_3.14-6 IRanges_2.0.1

[31] iterators_1.0.7 lattice_0.20-29

[33] latticeExtra_0.6-26 limma_3.22.1

[35] locfit_1.5-9.1 munsell_0.4.2

[37] nnet_7.3-8 plotrix_3.5-10

[39] plyr_1.8.1 proto_0.3-10

[41] RColorBrewer_1.1-2 Rcpp_0.11.3

[43] RcppArmadillo_0.4.550.1.0 reshape2_1.4.1

[45] rpart_4.1-8 RSQLite_1.0.0

[47] S4Vectors_0.4.0 scales_0.2.4

[49] sendmailR_1.2-1 splines_3.1.1
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[51] stats4_3.1.1 stringr_0.6.2

[53] survival_2.37-7 tools_3.1.1

[55] XML_3.98-1.1 xtable_1.7-4

[57] XVector_0.6.0
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